百度之星 2016 解题报告
1002 K 个连通块
¶题目简析
¶假入
如何求
为方便叙述,记
证明并不难,为使
中的点与不在 中的点之间不连通;因此,我们仅需考虑 中两两之间的边,去边的总方案为 . 内部的点两两连通;可以反过来考虑,减去所有使得内部不连通的情况。将点集 分成 和 两部分,其中 且 ,且 构成一个独立的连通块。对于这一划分方案,共有 种方案使得 和 之间不连通。因为 是一个独立的连通块,所以 和 之间的边必须全断,则 中的边可以自由选择了。
如何递推
¶不难想到递推方程
考虑
的情况,如果 ,则 与 所做的贡献是完全重复的。
去掉重复的贡献,我们得到新的递推式
进一步分析
¶上述分析足以通过此题,我跑了 858MS。但还有改进的余地。先改造一下递推式,记 。
上述递推式用刷表法实现即可避免
程序实现
¶- 空间复杂度
- 时间复杂度
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112#include <algorithm>#include <cstdio>#include <cstring>#include <iostream>using namespace std;
typedef long long LL;const int MAXN = 15;const int MOD = 1000000000 + 9;
int G[MAXN][MAXN];int p2[MAXN * MAXN];int l2[1 << MAXN];int dp[2][1 << MAXN];int f[1 << MAXN];int c[1 << MAXN];
inline int lowbit(int& x) { return x & -x;}
inline void add(int& x, int y) { x += y; if (x >= MOD) x -= MOD;}
inline void sub(int& x, int y) { x -= y; if (x < 0) x += MOD;}
int calc(int N, int K) { const int all = (1 << N) - 1; int now = 0, last = 1;
for (int s = 0; s <= all; s += 2) dp[0][s] = 0; for (int s = 1; s <= all; s += 2) dp[0][s] = f[s]; for (int k = 1; k < K; ++k) { swap(now, last); memset(dp[now], 0, sizeof dp[now]); for (int s = 1; s <= all; ++s) { if (!dp[last][s]) continue; int r = all ^ s; int x = lowbit(r); r ^= x;
for (int t = r; t; t = (t - 1) & r) add(dp[now][s | x | t], (LL)dp[last][s] * f[t | x] % MOD); add(dp[now][s | x], (LL)dp[last][s] * f[x] % MOD); } } return dp[now][all];}
void solve(int N, int K, int e) { const int all = (1 << N) - 1; static int vi[20]; int siz, cnt;
for (int s = 1; s <= all; ++s) { siz = cnt = 0; for (int u = s, v; u; u ^= v) vi[siz++] = l2[v = lowbit(u)]; for (int u = 0; u < siz; ++u) for (int v = u + 1; v < siz; ++v) cnt += G[vi[u]][vi[v]]; c[s] = p2[cnt]; }
memcpy(f, c, sizeof f);
for (int s = 1; s <= all; ++s) { int ls = lowbit(s); if (ls == s) continue; int r = s ^ ls; for (int t = (r - 1) & r; t; t = (t - 1) & r) sub(f[s], (LL)f[t | ls] * c[r ^ t] % MOD); sub(f[s], (LL)f[ls] * c[r] % MOD); }
int ans = (LL)calc(N, K) * p2[e] % MOD; printf("%d\n", ans);}
void work() { p2[0] = 1; for (int i = 1; i < MAXN * MAXN; ++i) p2[i] = p2[i - 1] * 2 % MOD; for (int i = 0; i < MAXN; ++i) l2[1 << i] = i;
int T_T, N, M, K, e, u, v; scanf("%d", &T_T); for (int kase = 1; kase <= T_T; ++kase) { printf("Case #%d:\n", kase); memset(G, 0, sizeof G); e = 0;
scanf("%d%d%d", &N, &M, &K); for (int i = 0; i < M; ++i) { scanf("%d%d", &u, &v); if (u > v) swap(u, v); if (u != v) ++G[u - 1][v - 1]; else ++e; }
solve(N, K, e); }}
int main() { work(); return 0;}
1004 XOR 游戏
¶题目简析
¶设
很可惜,这个方程的时间复杂度是
算法一
¶先假设
设当前在字典树中第
接下来考虑下一层往哪走,即
记与当前节点相连且边权为
. 也就是 .如果
,说明如果下一步选择 ,则所以我们 仅需选择
求出一个最优值 ,最后的答案就是 .如果
,即选择 ,则最坏情况答案不小于 . 同时,选择 ,最好的情况不会大于 .所以我们 仅需选择
求出一个最优值 ,即是最后的答案。
. 也就是 .只有走到
这一个选择。
根据上面的分析,不难发现,查询操作时间复杂度为
事实上,只要保证字典树中的表示
程序实现
¶- 时间复杂度:
- 空间复杂度:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124#include <algorithm>#include <cctype>#include <cstdio>#include <cstring>#include <iostream>#include <set>using namespace std;
static const int MAXN = 10000 + 10;
struct node { node* ch[2]; int val; void Maintain() { val = 0; if (ch[0]) val = ch[0]->val; if (ch[1]) val = std::max(val, ch[1]->val); }};
node nodepool[MAXN << 5];node* nodetop;node* root;
inline node* newnode() { nodetop->ch[0] = nodetop->ch[1] = NULL; nodetop->val = 0; return nodetop++;}
void Update(node*& o, int x, int v, int d = 30) { if (o == NULL) o = newnode(); if (d == -1) o->val = v; else { int c = (x >> d) & 1; Update(o->ch[c], x, v, d - 1); o->Maintain(); }}
int Query(node*& o, int x, int ans = 0, int d = 30) { if (o == NULL) return 0; if (d == -1) return min(o->val, ans); int c = (x >> d) & 1; if (o->ch[c ^ 1]) { if (o->ch[c ^ 1]->val < (ans ^ (1 << d))) return max(o->ch[c ^ 1]->val, Query(o->ch[c], x, ans, d - 1)); return Query(o->ch[c ^ 1], x, ans ^ (1 << d), d - 1); } return Query(o->ch[c], x, ans, d - 1);}
inline int read() { int s = 0; char c = getchar(); bool positive = true; for (; !isdigit(c); c = getchar()) if (c == '-') positive = false; for (; isdigit(c); c = getchar()) s = s * 10 + c - '0'; return positive ? s : -s;}
multiset<int> ms[MAXN];int A[MAXN];int B[MAXN], bsiz;int dp[2][MAXN];
inline void add(int x, int v) { int id = lower_bound(B, B + bsiz, x) - B; if (ms[id].upper_bound(v) == ms[id].end()) Update(root, B[id], v); ms[id].insert(v);}
inline void sub(int x, int v) { int id = lower_bound(B, B + bsiz, x) - B; multiset<int>::iterator it; it = ms[id].find(v); ms[id].erase(it); int vv = 0; if (!ms[id].empty()) { it = ms[id].end(); vv = *(--it); } if (vv < v) Update(root, B[id], vv);}
void work() { int N = read(); int K = read(); int L = read(); for (int i = 1; i <= N; ++i) A[i] = A[i - 1] ^ read();
memcpy(B, A + 1, sizeof(int) * N); sort(B, B + N); bsiz = std::unique(B, B + N) - B;
memset(dp[0], 0, sizeof dp[0]); for (int i = 1; i <= L; ++i) dp[0][i] = A[i];
int now = 0, last = 1; for (int k = 2; k <= K; ++k) { nodetop = nodepool; root = newnode(); for (int i = 0; i < bsiz; ++i) ms[i].clear();
swap(now, last); for (int n = 1; n <= N; ++n) { if (n > L + 1) sub(A[n - L - 1], dp[last][n - L - 1]); dp[now][n] = Query(root, A[n]); add(A[n], dp[last][n]); } } printf("%d\n", dp[now][N]);}
int main() { int T_T = read(); for (int kase = 1; kase <= T_T; ++kase) { printf("Case #%d:\n", kase); work(); } return 0;}
在离散化过程中使用排序,查询使用
算法二
¶重新定义
程序实现
¶- 时间复杂度:
- 空间复杂度:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108#include <algorithm>#include <cctype>#include <cstdio>#include <cstring>#include <iostream>using namespace std;
const int MAXN = 10000;
struct node { node* ch[2]; int val; node(int val = 0) : val(val) { ch[0] = ch[1] = NULL; }};
node* root;node* nodetop;node nodepool[MAXN << 5];bool dp[12][MAXN];int A[MAXN];int N, K, L;
inline node* newnode() { nodetop->ch[0] = nodetop->ch[1] = NULL; nodetop->val = 0; return nodetop++;}
inline void Insert(int x, int d) { node* u = root; for (int i = 30; i >= 0; --i) { int c = (x >> i) & 1; if (!u->ch[c]) u->ch[c] = newnode(); u = u->ch[c]; u->val += d; }}
inline int Search(int x) { node* u = root; int ans = 0; for (int i = 30; i >= 0; --i) { int c = (x >> i) & 1; if (u->ch[c ^ 1] && u->ch[c ^ 1]->val > 0) { ans ^= 1 << i; u = u->ch[c ^ 1]; } else if (u->ch[c]) u = u->ch[c]; } return ans;}
inline int read() { int s = 0; char c = getchar(); bool positive = true; for (; !isdigit(c); c = getchar()) if (c == '-') positive = false; for (; isdigit(c); c = getchar()) s = s * 10 + c - '0'; return positive ? s : -s;}
bool check(int val) { memset(dp[1], 0, sizeof dp[1]); for (int n = 1; n <= L; ++n) dp[1][n] = A[n] >= val ? true : false;
for (int k = 2; k <= K; ++k) { nodetop = nodepool; root = newnode(); for (int n = 1; n <= N; ++n) { if (n > L + 1 && dp[k - 1][n - L - 1]) Insert(A[n - L - 1], -1);
dp[k][n] = Search(A[n]) >= val ? true : false;
if (dp[k - 1][n]) Insert(A[n], 1); } } return dp[K][N];}
void work() { N = read(); K = read(); L = read(); for (int i = 1; i <= N; ++i) A[i] = A[i - 1] ^ read();
int lft = 0, rht = (1 << 30) | 1; while (lft < rht) { int mid = (lft + rht) >> 1; if (check(mid)) lft = mid + 1; else rht = mid; }
printf("%d\n", lft - 1);}
int main() { int T_T = read(); for (int kase = 1; kase <= T_T; ++kase) { printf("Case #%d:\n", kase); work(); } return 0;}
算法二思路简单,实现难度小,效率还不错,跑了